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A GENERAL INTEGRAL FORM OF THE BOUNDnY-WER EQUATION FOR mcomwwnux
FLOW WITH AN APPLICATIONTO THE CALCULATION OF THE SEPARATION

POINT OF TURBULENT BOUNIMRY LAYERS 1

By A-EALTETBBTIS and CBIACHIAOLIX

SUMMARY

A general integral form oj the ibundary-layer equation i8
dericed from the Prandtl partial-di~erential bowndary-layer

equation. T7w general integral equation, m-did for either
laminar or twrbu[ent incomprewible boundary-layer flow, eon-
tain8 the Von Kdrmdn momentum eguution, the kinetic-energy
equation, and the LoMm&ii equation as ~pecia.1eases.

In an attempt to obtain a practical method for the calculation
qf the development of the turbulent boundary layer, use is made
of the experimental jinding that all the. velocity pro$le~ of the
turbulent boundary layer form essentially a single-parameter
fami[y. .% general equation h thereby changed to a timpler
one from which an equation far the space rate of change of the
Aape parameter of the turbultmt boundary layer can be obtained.

lb resulting equation for the space rate of change .of tlw
zelom”ty-pro$[e parameter is resfm”ctedby the a88umption thut
th zelocity profle~ oj the turbulent boundary layer can be
approximated by power pro$le8. Two of the resulting equa-
tions are used to calculate the distribution of the pro$le shape
parameter OMT an airfoil for one experimentally determined
preswnw distribution. A/though di~we-nt assumptima were
tried for the shearing 8tres8 across the bowui!ary luyer, the mLcw-
lated distn”bution of the projde shupe paramtier did not agree
ezaetly with the experimental distribu$ium

An examination is made of th+?e~ect oj using the ezperi-
mentalty determined single-parameter famiiy of celocify profiles
instead of the sower profles on certain functi.orM that occw in
the equation for the 8pace rat% of change of the wloci.ty-profle
parameter. One calmdution of the distribution of tb pro$le
8hape parameter m!er an airfoil is ako made for the ezpe%
mentally determined pr.asure dtitm”bwtion by um”ng the sinjle-
para.meter family of celom”typrofles found from experiment.
A comparison of the resuJt8 un”th.those of a calculation made
with the same assumptions except for the we of power pro$les
sha.os some difference near the separatism point. It i8 belieued,
huwerer, that the apparent lack of reliability of tti specijlc
eguation8 u8ed to make the calculations is caused mainly by
the lack of precise knowledge concerning the surface shear and
the distributwn of the sheming 8tress acro8s the turbulent
boundary layer. The present mudysis emphmiza tlM need
for information concerning the shearing streasa in turbulent
boundary layers.

INTRODUCTION

An outstanding problem in aerod~amic theory is to cal- ._..
cukte -whether the flow wiU separate horn the surface of ~
specfic body and, if so, where the separation will occur.
The concept of the boundmy layer and the equations that
describe the flow in it, introduced by Pranchl (reference I)
and fit worked out in some detail by Blasius (reference 2),

reduce the problem to solving the Prandtl boundary-htyer
equation when the flow is laminar. Because of the mathem-
atical difhdty of solvi~u the equation, approximate
methods were developed for the calculation of the properties

.

of the laminar boundary layer (reference 3). In some of
these methods, for example, the PohIhauaen method (refer-
enca 3) and the YiGeghardtmethod (reference 4), a functional
form is chosen for the velocity distribution through the
boundary layer and is combined with either the Von Khnfin
momentum equation alone (reference 5) or with both the
Von K&rm6n momentum equation and the kinetic-energy “”
equation (reference 4). The result is the replacement of the
Prandtl partial-differential equation by one ordinary difler-
entia.1equation in the PoJdhauaenmethod and b-j- two ordi-
nary differential equations in the Wieghardt method. A
solution of the ordinary MFerential equation or equations
protiiles the boundary-layer velocity profles along the body. .
These and other approximate methods that use. only the
Iron Kfim&n momentum equation, or the momentum and
kinetic-energy equationa together, do not satisfy exactly the
Prandtl boundary-layer equation.

Because the flow in the boundary la-yer ia more often
turbulent than laminar in ca~s encountered in engineering,
the problem of calculating the separation point is of even
more importance for turbulent than for kninar boundary
layers. In spite of the importance of the problem, however,
leas progrees has been made in the development of methods
for the calculation of the behavior of turbulent boundary
layers than for kuninar boundary layere. The lack of
progress stems horn the absence of an explicit independent
equation for the shearing stress that is accurate enough to
lead ta a description of the flow when used with the Prandtl
equation. ●

The main attempts to obtain methods for the calculation
of the behavior of the incompressible tnrbtient boundary

1SupamedHATACATh- 2MS,“A Oeneml Integml Form of the Boundary-Layer Equation for Incompresdbla Flow with an AppUcation to tha Cahndationof the &pe.ration Point WJ?ur-
bulent BoundeJT Las by N-wI Tf+emin and Cbi8 ChSeoLin, 1954.
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layer in the presence of pressure gradients are those of
references 6 to 12. The results of these attempts are unsatis-
factory either because the assumptions upon which they rest
are incorrect or because the equations used to make cal-
culations were not derived from the koundary-layer equations.

The analysis of reference 6 is based on the assumption that
the velocity profile is a single-valued function of the ratio of
the pressurk gradient to the skin friction, an assumption
shown to bc incorrect by later investigators (for example, see
reference 12). In the amdyses of references 7, 10, 11, and
12 h momentum equation is used, together with an auxil-
iary equation, to calculate the distribution of velocity pro-
fUes over a surface. In each of these four methods the
auxiliary equation is not derived from the boundary-layer
equations but is empirical.

In reference 8, the equation that gives the variation of
the mixing length across a pipe (reference 3) was used to
calculate k velocity profiks. The fact that the mixing-
length distribution across the boundary layer is not the
same as across pipes is shown in references 13 to 15.

Reference 9 does not provide a method for the calculation
of the distribution of turbulent velocity profiles along a
surface. It does, hovever, suggest that separation of the
turbulent boundary layer always occurs vihen the numerical
value of the nondimensional pressure gradient reaches an
empirical constant.

The purpose of the present investigation is to begin with
the boundary-layer equation for incompressible flow and
to proceed as closely to a method for the calculation of the
behavior of the turbulent boundary lajer as the present
knowledge of the turbulent boundary layer permits.

At first it might appear that the uae of empirical auxiliary
equations in methods for the ca]cuIat,ion of the behavior of
turbulent boundary layers can be avoided by developing
a method similar to the PoMhausen method whjch requires
the solution of only the Von Kb-mln momentum equation.
For turbulent flow, however, in contrast with kun.inarflow,
the conditions on the behavior of the velocity profile at the
surface that can be obtained from the boundary-layer equa-
tion seem to be of little or no-use for the determination of the
shape of the velocity profile across the boundary layer.
‘his difference between laminar and turbulent flow makes
inapplicable the ~ohIhausen process in which a type of
function is chosen to represent the velocity prcdlles, the
function for the velocity profiles is combined with the VoiI
IMrmtfn momentum equation, and the resulting ordinary
differential equation for the space rate of change of the
profile shape parameter is solved.

An auxiliary equation for the calculation of the behavior
of the turbulent boundary layer can, however, be obtained
from the boundary-layer equation by making use of the
.

.

experimentally verifiable fact (references 7, 10, 11, 14, and
15) that ~ velocity profiles of the turbulent boundary
layer form essentially a singk-parameter farni~y of curves.
In the present analysis the Loitsianskii equation (reference
16) is generalized by multiplying the Prandtl boundmy-
layer equa~ionnot o~y by an arbitrary power of the velocity
in the boundary layer but also by an arbitrary power of the
chatance from the surface. The resulting equation is then
integrated across the boundary layer and provitlcs a general
integral form of the boundary-layer equation, valid for
either Jaminar or turbulent flow. This general integml
form of the boundary-layer equation reduces to the Loitsi-
anskii equation when the distance from the surface is raised
to the zmoeth power, to the Von Khnfm momentum equa-
tion when both the distance from the surface and the velocity
are raised to the zeroet.h power, and to the kinetic-cucrgy
equation when the distance from the surface is raised”to the
zeroeth power and the velocity is raised to the fhst. power.

When use is made of the assumption of a single-paranmtcr
famiIy of velocity profiles, the general inb2gral form of lhc
boundary-layer equation becomes a general equation fur
the rate of change along the surface of the velocity-profile
shape parameter. This equation for the rate of chtinge of
the velocity-profile shape parameter is the desired auxilimy
equation.

The assumption of the single-parameter family of velocity
profiles changes the problem from one of finding a solution
of a partial-dHerential equation, the Prandtl houndary-
layer equation, to one of finding a solution of two simul-
taneous ordinary dif?tercntial equations, the equation for
the rate of change of the shape parameter and the Yon
IWmtin momentum equation. The differential equation
for the rate of change of the shape parameter, however,
crmnot result in a solution of the problem in the prmm t
analysis because a knowledge of the shearing stress is lacking,
In the”present analysis various assumptions are made for
the distribution of shearing stress through the boundary
layer, and the distribution of the shape ptmanmtcrover [he
surface of an airfoil is then calculated. Because of the mbi-
trary assumptions for the shear distribution and the usc of
a flat-plate skin-friction formula, prec.iscagmemcnt bet.wcen
the calculated and experimentally obtained distributions
of the shape parameter is not obtained.

The problem of finding the shearing stress in the turbulcu[
boundary layer remains. It is l.wlievcd, hownwr, thnt, if
suitable approximations are found for the shear nnclsurfaco
friction, the equations presented herein should cnaMe the
development of the turbulent boundary layer to be calcu-
lated with an accuracy sufficient for engineering purposes.

Thepresenf,workwasbegunwhile Dr. Linwss tcmpomri?y at
theLangley Laboratory and was centinued by correspondence,
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SYMSOLS

A arbitrary positive fiteger in shear polyn mial

a, b, c coefficients in polynomial fors:r~d{
B eqonent in expression for she=
e reference chord
FO,F, functional notation

f=;
.

g—;.——

gl . derivatke of shear pcd.ynomialfor X=O
ag

g2 coefficient ‘f h h ‘~reaon ‘or q

H=:

HO equilibrium value of H for CO=O

j, q, 1

K

~.,_dK
dH

h!

ratio of kinetic-energy thickue= to momentum

function of H
(=(H=’)?

1s‘j(l–j~-’)y’d~L=~ o

J
all=+ :Y’(1 –j”+’) dy

“m - e~onent of u in derivation of general equation

J
la

h“=~ ~ Y‘(1 –j~+l)jdy .

~, dlv
‘dH

n qonent of y in derivation of general equation

P codlicient of u in equation for $$:

P exponent in equation for power profiles f=r’
PI static pressure

~=; ~Yu-*(l –f”+’) d;
.

radius of body of revolution ..—

coefficient of I#Jin equrd.ionfor 6~~

velocity pardlel to surface and at outer edge --
of boundary layer

velocity parallel to surface and inside bouncl- –
SKYlayer, ‘positive in direction of positire z

velocity perpendicular to surface and inside
boundary layer, positive in direction of
positive y

value of u at:y=O
coordinate parallel to surface, positi~e in

direction from leading to trading edge
coord.h.iateperpendicukr to surface, positi~e

outward from surface
dest value of y for which the difference

U–u is negligible

displacement thickness (c~(l–fl dy)

momentum thickness”(J*j(l –fi dy)

viscositJ-

—

“=A(l-MW
P density
T sheari@ stress
r’ surface shearing stress

.

ANALYSIS

DERIVATION- OF GENERAL EQUATION

The gened equation is derived for the body oi re~olution
because the equation for twodimensionrd flow can be
obtained horn this equation b-j-letting the radius of a trans-
verse section of the body of revolution become infinite.
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The boundary-layer equation of motion for the body of
revolution, also valid for twodimeneional flow, from refer-
ence 3 is

(1)

After multiplying through by u~, making use of the equation
of continuity that is valid in the boundary layer of a body
of revolution (reference 3)

and noting that
dU dp,

Pu~ ‘–z
equation (1) becomes

.(2)

After equation (2) is written in a. form in which each term
vanishes at the outer edge of the boundary layer, each term
of the equation is multiplied by y’ and integrated from y= O
to y=& The result (see appendix A for detailed clevelop-

(3)

Equation (3) is the general integral form of the boundary-
layer equation.

The Von Khmin momentum equation is obtaiued from
equation (3) by leLting m.= O,and h= O, the equation for
kinetic energy is obtained by letting m= 1 and n= O, and
the equation for morncnt of momentum is obtained by
letting m=O and n=l.

In the case m=n=O.

f
AM=, :(1–fljdy=e

or
A~= 1

Also,

1’
Lo= 6~f– I)dy=--d”

.0
or

L=–:=-H

It can be easily verified that all the integrals, except (1,
involved in equation (3) hrive finite integrands as n ap-
proaches O. The limit nQ, however, approaches unity as

n approaches O; thus

snQO’=n ~Jy”-l(l –j~+l)dy

[ 7S
@(1 –.r+’)dv= yql –j~+q – aynA

00

The first term drops out if n#O. Then, by taking the lin~it.
n+, the result is

Iim nQt?K=l
n+O

Hence, when m=n=O, equation (3) bccotnw

Equation (4) is the momentum cquatioll for
body of revolution witL flow through the surfwcc. .For Lwo-
dimensimal flow, equation (4) becomes

9;$32+2)-$=-3 (5}

when the value of ~ from equation (4) is substituted in(o
dx

equation (3), the result is

(dx- )
o ~ n~, +$$~{ m (N–L)– n[(J– M)+N(H+ !2)]–

L–NH} –:~n [(J–M)+A@nQ-N(n+ 1)]

‘“-%[’~+’)t’ef”’=%’’+(n+’)~l ‘6’

where _.._ -.

&?r=—
To

The assumptions contained in equation (6) are the usual
boundary-layer assumptions. Equation (6) is valid for
both ~aminarand turbulent flow.

FORM OF EQUATION (6) FOR SINGLE-PARAMETER FAMILY OF
YELOCIT~ PROMLES

EquItion (6) is now to be placccl in a form wdicl when thu
velocity profiks form a single-parameter fandy of curves
~=j(q,H)). For this purpose the Mm 1, of equation (C)
is modified in the following manner:

By definition,

Becauie~ depends only on q and H,

From the definition of q
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then

or, after an integration by parts of the &St term on the right-
han~ side, the result is

The expression for lI@B~lthen becomes

sldt9 8
~~ ~y’-’ (1 –fm+l)

[r’’’- fldddy-
dg a

-Jdz OY“-1’1-f”+103%dOd’

But

sa
y’(1 —j”+l)dy= jxfl’+1

o

J
ay’(1 —f”+~)jdy=Ne*+l

o
and

J
ay’-yl–jm+l)

o [J@)ddd~=J8’”

Then with

J
a?/=-ll –.7’)o (J%W’Y=’’”’l

the expression for L can be vmitten as

1,=;&#+J)-1~ (7)

When the expression for 11 &om equation (7) is substituted

into equation (6) and equation (4) for ~ is used, the folIow-

ing equation is obtained:

‘H%+no=a-?@+1) (J—M)+L(??I+- 1)+

.N(H–?IZ)I+*[W–M)–N–

: [w-m–N+nQl (8)

where W dN dH
~z —d= ~ has been used. Equation (8) for 8 ~———

is applicable both to tvro-dimensional flow and to flow-over
a body of revolution.

In equation (8) aII the integrals, except the one invohing
the shear ratio g, are functions of H, m, and n ordy. For

the prexmt no restricti~e assumptions regarding the shear
are made. The form of the kinetic-energy equation for a
single-parameter famiIy of ~elocity profiles is obtained from
equation (8) by placing m= I and n=O and dividing by -
N’(H) =K’(H). Thus,

K–1 no
()

— .
K’ U (9)

The symbol h“ represents the ratio of the kinetic-energy

thicknesssa(1–~~dy to the momentum thickness. Note
o

that in the derkation of equation (9) from equation (8), the
assumption of a single-prmccaeter fmniIy of curves is not

restricted to the case ~=0.
u

RESTRICTION OF GExEEAL EQUATION- TO POWER PEOFII.ES

The data in ilgure 1 show- that the power profles defined
by f= ~’ are a good approximation to the “standard” profles
derived by fairing experimental data (reference 10). Equa-
tion (8) can be further developed by using the assumption
that j= f’. “Mer some fairly lengthy calculations (see
appendix B), equation (8) becomes

*dH –.4y(P+l)(2P+l) k(Tn+2)+n+11 @ W
z=

——.. p?n+n+l Udz+

.2p~(m+2)+n+l] ~2p+1)+
pm +n {

J
@(m+2)+n+l] ‘ p“’n~d~~-&-

0

2~+l)@(m+2)+n+l] 00
p(m+l)+n u (10)

As a lirst approximation the assumption has been made that

f= ~“ even when ~#0.

The occurrence of the arbitrary positive integers m and n
in equations (8) and (10) requires an explanation. Ii order
to determine why m and n.appear, equation (8) is written in
a different form. By making use of the definitions for LN,1,
J, M, L, and Q and integrating by parts where necessary in
order to eliminate terms that contain q‘-l, the resdt is

—n(H+l)(J— M)+L@+l)+lV(H—”m) .,
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and

n(J– M)-N+nQ=(m+l)
J ““nf”%(’-rfd’)d’o

Eauation (8) then becomes

By using the assumption of a single-parameter family of curves directly in the, partial-differential equation (1), the
following ordinary ditTerentialequtition is obtained:

The concept of a single-parameter family of velocity pro-
files is consistent with equation (1) and with particular
functions for To/PW, g, and j when the right-hand side of
equation (1Z) is independent of q. When the right-hand side
of equation (12) is independent of ~, the right-hand side of
equation (11)is independent of m and n. Equations (11)
and (] 2) are then identical.

To obtain an equationti_O $: that does not contain either

m or n or both, the functions To/pW, g, and-j must there-
fore be such that the-right-hand side of equation (12) is

independent of q; the solution of the equation for 8 ~H thendx
provides a soluticmof equation (l). IWotethat the probhnn
is to find a solution not of equation (1) alone but of equation
(1) and the independent relation for the shearing stress in
turbulent boundary layers; this relation is at present un-
known.

The nature of the approximation made in the resent
dfi

analysis, in order ta obtain a specific equation for ZJ may

be clarified by noting that a specific equation for ~~ is ob-

tained from equation (8) by choosing the functions TJPW,

g, and j and substituting an arbitrary positive integer for m
and an arbitrary positive integer for n. The calculated
distribution of H over a body for arbitrarily chosen functions
for rO/PU*, g, and j is then consistent with the m~~tum

~x. Forequation and one of the integraI equations for —

example, if m= 1 and n= O, both the. momentum and the
kinetic~nergy equations are satisiied but no other ones.
If m=O and n= 1, only the momentum and the moment of
momentum equations are satisfied. In the present amdyeis
onIy the momentum, the kinetic-energy, and the moment of
momentum equations-equations which have familiar phye-
ical meaning-are used.

As noted prevcioualy, equation (11) is independent of m
and n if the functions ro/PW, g, and~ are such that the righ&
hand -sideof equation (12) is independent of q. In this case
a solution of equation (1) rwults and the functions. To/pW,
g, and f and the calculated distribution of Zl satisfy every
particular equation obttiable from equation (11), (10), or
(8) by assigning positive integers to m and n.

P?ote thatd~and n cannot both be made zero in equation

(8) beca~e ~H+nl=O for m=?a=O... ”Jf m and n are both

o / 2 3“4 5 6 7 8 9
v

(a) H-lAl@ LS18, and 1.710.
(b) H=LW, 2057, and 2277.
(C) H-1463 md I?IU.

FIGUREL—Comp4.on oi experimental and power ~eloclty prolllw.
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zero, equation (8) becomes 0=0. It is also noted that
equations (8) and (10) are did both for flow over a body of
re~olution and for two-dimensional flow.

For m=l and n.=0, equation (10) leads to the equation
for kinetic energy

(H+ 1)(sH– 1) C,

4 v
(13)

where the relation for power profiles .29+ 1=11 has been
introduced. This form of the energy equation can also be
obtained from equation (9) by noting that, from the defini-
tion of K ud the equation for po-iverpro&s,

A comparison of the values of K obtained from this formula
and obtained horn the standard profles is given in figure 2.

The equation of moment of momentum for power profiles
is obtained from equation (10) by ~etting m.= O and n= 1;
it is

In this equation the term invoking the shear distribution
may be remit ten as foIlows:

It then invokes the mean shear inside the boundary layer.

A’M!EMPTS TO DEEIVE A BELATIOX GOVERNING THE CKANGE OF TEE
FORM PARAMETER

In most of the recent analyses of the development of a
turbulent boundary layer, an empirical relation governing
the change of the form parameter H is usually introduced.

K

A’
FtGUEEZ.-%-k 0[ Kfoc wpwhnmWdandpwwwM&pmfW.

It is clear that equation (10) automat-icaLIyfurnishes such
relations if the shear distribution is knowm In this section, __
three attempts “are described ta establish such a relation,
Three attempts are based on the follow@g simple assump-
tions for the shear distribution

(a) The shear distribution depends ordy on ~ ~, which

is eqmd to the PohLhausenparameter multiplied b-j-a factor
(reference 3).

(b) The shear is constant across the boundary layer.
-.

(c) The shear distribution depends only on the form “
parameter of the velocity distribution.

The fit *O assumptions are used either -with the energy
equation in the forms given @ equations (9) and (13) or
tith equation (14) for the moment of momentum. The .
last assumption is used with equations (13) and (14) jointly.

(a) Shear distribution depending only on the Pohlhausen
parameteri-The &st assumption foILows the origid idea
of the method of Von Khn6n and Pohlhausen in using
polynomial approximations together with the boundary
conditions obtained by successive ditlerentiation of the __
equations of motion (reference 3). Fediaevsliy (reference 8) -
appears to have been the first to introduce it into t~e inves-
tigation of turbulent boundary layers. When the shear
stress through the turbulent boundary layer is assumed to

be a polynomial of fifth degree in ~=f satisfying the fo~ov- _

ing boundary conditions:
at y=O

?)T dpl azrT=TO —=—t)y dx 5p=0
at y=~

i)T_ o &T
T=o

~– p=o

t-hefollowing expression is obtained:

g=(l–f)3[l +(3+k)r+3(2+A)rq (15)

The shear distribution g is a function of ~ and k, where

The particular boundary conditions at y=O restrict this

development to the case ~=0.

From the s-hemdistribution (equation (15)) the calculation
may be made of the coefficients P and ~. The attempt to
cakdate P and S by using the standard profles together
with equations (9) and (15) was, however, umuccessfd for..
two reasons. First., the ratio 6/8, which must be known,
could not be accurately determined from the standard pro-
flee. Second, for reasonable -dues of 6/8, the calcdated
values of P tiere positive for values of H for which P ehould
be negativ%

The calculation of the part of P independent of the Shea
profile was then made both for the standard proties and the
power profiles by making use of the kinetic-energy equations
(equations (9) and (13), r&pecti~ely); the comparison is
shown in figure 3. The cIosen- of the results suggmi%
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that it is permissible to use power profiles as an approximation
for calculating P and S. From equations (13) and (15),

[
P=–H(3H–1) ET-l–

~ 96(3H–1)
(H+5)(H+7)(H+9) 1

and

[
S=(3H–1) H–

240(3~–1)
(H+5)(H+7)(H+9) 1

The functions P imd S, given by equations (16) and
respectively, are shoym in figure 4.

The fact that the equation

eg=Pu+s$

where P and S are obtained from equations (16) and

(16)

(17)

(17),

(17),
respectively, does not predict the behavior of the turbulent
boundary layer is shown as follows: .~et M=O; then, for

H greater than appro.simately 1.5; ~ should be negative.

Because S from equation (17) is positive for ~ 1.2, it

follows that ~~ is positive. This conclusion is incorrect;

-P

/.0 /.2 /.4 /,6 LB 20 -22 24. 26 28
H.

FIGCEE&-VslrIea of P from energy equatlm.Fm power proflks, P- -H(H–1)(8H-l);

forexpwfnwntd pr-oflk, P=%?.

.-

~

3
h

/.0 /.2 /.4 1.6 1,8 Zo 2.2 24 Zfj 28
H

FIOWEX4.—Value3of P fromequstbn(16)and vducs of S fromequatfon (17).

th~efore, the function for S (equation (17)) is inconsistent.
with the known behavior of turbulent boundary layers.

To show that the function for P (equation (16)) is in-
consistent with the known behavior of turbulent bwudary

layers, let H==1.4.
dIl

By making ~ positive and large, -J;

becomes positive and large because P given by cquntiou

(16) is positive. For positive vrdues of ~, however, it is

knovm that ‘~ &odd be negative. The function for P

(equation (16)) is therefore inconsistent with the knowII
behavior of turbulent boundary layers.

In order to determine whether funrtions for P and S that
do not result in obviously incorrecL conchlsiona can bc
obtained by making the shear polynomial satisfy a grentw
number of boundary conditions tit the outer edge of the
boundary layer, the shenr polynomial is generalized by
writing

[
g=(l–fy l+llr+~$+ll 2 +Ar(l–r)A(l+Af)r]

(18)

The boundary conditions at the surface thmtare satisfied by
equation ‘(18) are

g=l or T=TO

w_.
?ip–

or

or

?)T dp,—.—
by dx

yr=o
by’

At y= ~, the conditim~sthat are satisfied arc

g=()
. .

?Fg
F’”

. . . . .

where

[
gl=(l–ty [A+ A(A+N-A (l–f)A-’ 1+ A(+ ‘($1) r].

and, for AZ 1,
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By us@ the expression for gl, the eqpation obtained for S is

EQUATION -

.

1075

—
A!p

S’=2(3P+1)’ {&–(~+p)(A+p–l) (A+y–2) . . .
L

A(A+l)(p+I) 1}(P+l)+A+:+P+ZA+2+Y)(A1+Y) (19)

By using the expressionfor g, the equation for P is found to be

P
{

~p A!(p+l)

[

A(p+l)
=–2(2p+l)(3p+l)z —–

3P+ 1 (A+p) (A-M–1) (A+2–2) . . 1. (p+l) ~+~+p+(A+2+P)(A+ l+p) ’20)

To avoid positive dues for S obtained from equation (19)
for H<3, it is found that A must be 1 in the expression for
.gI. It is also found that, to avoid positive -rakes for P in
equation (20) for -O, A must be w in the expression for
g~. The values for S and P then become

s=@H-l)g;;) (H–3) (21)

P=–H(H–1)(3H–1) (.22)

The expression for P (equation (2z)) is the same as the

coefEcient of ~~”~, ~z m equation (13); letting A+ mmakes the

coefficient of x in equation (18) become zero. The shear

profle then contributes nothing to the coefficient of $ ~~

in equation (13).
Equations (21) and (22) for S and P, respectively, were

tested by making a computation of H and 6 for the pressure
distribution given in tnble I of reference 10. The computa-

tion began at ~=0 .075 tith the values given in table I of

reference 10. The equations used are

~ dH~=–H(H– 1)(3H– l)w+
(3g–l)(lZ– l)(H–3) ~

El+5

and

de
The equation for ~ is the Von K6rrmfnmomentum equation.

The equation for @ was obtained from reference 17 and is

4
=0.006535

ROM

The calculated distribution of H along x -was far from the
experimental curve.

In an attempt to reduce the sensitivity of the equation for
p -
z to the shemcdistribution, the moment of momentum

equation (equation (14)), in which the shear appears in the
coefficient of @ only as a mean value, is used. When the
generalized expre=ion (equation (18)) ie used for the shear
distribution g, the result obtained is

~ dH
[

H(H– 1)(H+ 1)’+ 3H(H+ 1)8
z= – ~ 1(A+2)(A+3) a+

3(H+ 1) ~(E&i) [H– .4+3
1

(23)

where *=O ~ required by equation (18). To keep the
coefficient of wnegative for all positive -rahmeof H, A must
equaI m in the coefficient of a. The shear distribution is
then independent of the pressure gradient. To make the -.
coeftlcient of + negative for va~uesof H near 3, A must have ‘-
the smallest value that it can take; therefore, let A.= 1 in
the coe.tlicientof t. Equation (23) then becomes

~ dH_ –H(W–l)(H+l) U+(HW)(H-3) ~
z– 2 4

(24)

A calcuktion for the example in table I of reference 10 tith _
equation {24) resulted in a computed curve for H that was
far from the experimental curve.

(b) Assumption of constant shear across the boundary
layer.-A.ll the computations of H have led to values of H
much larger than the experimental values. Therefore, in
“order to reduce the calculated -dues of Hit is necessary to
increase S. In order to increase S, t-heassumption of con-
stant shear across the boundary layer is made. For conetant ‘-
shear it can be showmthat.

by letting g= (1– ~)” and taking the limit of the integral
as B4. Equation (14), &fter the assumption of constant
shear k introduced, becomes

dH_ –H(H+l)(@–1)
%- 2

@–(&–l)@+(R-–l)*

In order to make ~~=0 at H=l.286 for ~=0, the coef-

ficient of @ was arbitrarily changed to W-— 1.286Z. The
equation then becomes

~dH _ –H(H+l)(lT-1)
dx 2

a—(H=-l.653)@+(@ -1)# (25)

This equation was used for the computation of H with -
#=0, and the resulti for the example given in table I of
reference 10 are shown in llgure 5.

The assumption of constant shear acrose the boundary
layer was aIso combined with the kinetic-energy equation.
When the power proiles and the a=urnption of constant
shear are used in equation (13), the Icinetic+nergy equation
becomes

(H–1)(3H–1) ~+
0~=–H(H—1)(3H—l)u– — —2

(H+1)(3H–1)~
4
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~_H(H+l)(HW); ~=m_l ~M;~-.

2

The function –H(H– 1)(3H– 1) is shown in figure 3 and

the function –(H–l)(3H–l),in ~.re ~
2 When the stand-

ard profiles are substituted for the power proflea and the
assumption of constant shear is made, the kinetic-energy
equation (equation (9) ) becomes’ ‘-

~dE7_K(H-l)ti K–2 K–1
dx K’ –74 –~$

\vherethe function ‘(!&_l) ~1s showu in figure 3 and the

function –
K–2 .
~ M shown in figtire 6. The r&ulLs of these

calculations of H (with $= O) are shown in figure 7. In this
case, the use of power profiles makes the result somewhat
d~erent from that obtained by using the standard profiles,

(c) Determination of S by the simultaneous use of the
energy and moment of momentum equations.—It seeme
obvious that, if equations (13) and. (14) were exact, the
coefficients of w, 4, and # in equation (13) would be equaI to
the coef%cientsof M,+, and @ in equation (14). The ratio of
the coeftlcients of w is

_H(Er+l)(Ew-1) . —<

_H(H & ~)=4E& -““ ..::”.:— —

The curve of (H+l)’
2 (3H– 1)

is given in figure 8 and is seen to be

closeto unity.

.- —.

s

H--
FJGUBk0.-V&Ies of S from kfnetf~ eqllstlcmwith th8WUJllpfk#l of CmM8ntahcsr,

For&iwerpm131~ 8--~H-1)~H-’); for ~pedmenttilproflks, S-- ‘~z.
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ayc
FI@CBE7.—Comparfsonof experimental veluw of Iiend vaIucs of H caknlnted by klnut!c

energy eqnotlcmwith constant chew ecroeaboundary Iwcr.

The ratio of the coefficients of # is

4(W–1) 4(H–1)

(H+ 1) (3H.-– I)=m

The curve of 4~~~~) “ISaIao given in figure 8. The values

are far from unity for small values of H but become cquril
to unity for H=3. .
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FIGCEES.-R8M of prcsnue and axthm hctom in mergy and moment of momentum
equations.

Equating the coefficients of @ results in

(w–l) [H+(H+l)Jr * dr]

=(3H–1) [H+~J1t”+l * dr]

=ZT(3 –H) (26)

Xow let

and

When the shesr distribution is assumed to depend only on
H, the intqgrale in equation (26) are functions of H alone.
Because equation (26) is then an identity, the coefficients
of the various powers of H csn be equated to zero. The
resulting equations are:

For HO

for IF

—a—b+3j—~=0

for W

a+ b—c—~ q+31=—1

for H4

b+c–:l=o

for P
C=()

The results obtained are:

28.—
‘–128

b–
180

—–m

C=o

i=–&
32

!7–— –m

“1077

-.

—

.-

—

1=–%
Therefore,

JO’rgdt=7–3y
and

Equation (14), the moment of momentum equation, becomes

dH H(W–l)(H+I)
‘Tc=– 2

u—

(H–I)(3H–1)(7+22H+ 15H7 ~+(R_llx (27)
32

and equation (13), the energy equation, becomes
-.

6 >~=–H(H—l) (3H—1) ~–

(H–l)(3H–1)(7+22.H+ 15~ ~+(H+l)(3H–1)*
32 4

(28)

The ~ariat.ionof H with z for the irdiEJ wdues and the pres-
sure distribution given in table I of reference 10was computed
by using a motied form of equation (28). In order that
dH~=0 at values of E? in agreement with experiment when

~=(), the coficient of @ h eqwtion (28)viasreplaced by

(H–H,) (3H–Ho) (7+22H+ 15H~
32

where
Ho=H,(Re)

The variation of HOwith Rt we calculated from the equation

log,, HO=0.5990–0.1980 log,o &-O.01S9 (log,, Ih)’

which was derived to represent a faired curve through t-he –
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experimental data (see fig. 9); the data were obtained from
reference 13 and from British results that are not g9nerally
available. The result of a computation of H for *=O and
with equation (28) modified as follows

~ dH~= –H(H–l)(3H–I)”@–

(H–E?,) (3H–HJO+2ZH+15A?) ~+(H+l)(3H–u #
32 4

(29)
is given in il.gure10,

Assumptions (b) and (c) lead to somewhat better results
than assumption (a) although they are still not as satisfac-
tory as those obtained from the purely empirica~ relations
introduced in references 10 and 12. .._J,tis clear that this
difference is caused partly by the inaccuracy of the simple
assumption about the shear distribution and can be im-
proved by using better dmcriptions. However, in wiem7of
the limited present knowledge of the shear distribution) it
does not seem worth while to make more complicated
assumptions.

foodoa. i
90 1 I

80 \
I

70 I
I

80 I
I

50 I
O Referexe 73 “

1 ❑ Lki+ishdafa fro)’ generolly
40 a\ uvoJobJe)

\ ——– Iogn HO= 0.5990-0.1980 Iqm R@--

Zn 1 o.olf19(?og10ll,g)~I

9 I \l 1

8 Y

7 Q\
I

It may be noted that the final equations obtained for the
change of the form parameter by the three assumptions arc
all of thf3form

where Q=— t!
ence 12, but

+lw)to+w)+

d?l
~ ancl 4=2. This form is used in r(’fcr-

p U*
a dif7ereutform is used in rcfcrenco 10.

INVESTIGAITON OF ENEIiGY EQUATION

Since none-of the three assumptions for the shear &Wibu-

tion resultsin a dependable equation for $:J an investigation

is made to determine whether a result common to the three

a,wunptions-namely that the coefEcient of.% in the equa-

tions fo;.% is a function of H alone—is Ycry far from truo

by using experimental data and the liinctic-energy cquti[ion
without any assumption for the shear.

If no assumptions other than the boundary-layer assump-
tions are made and if in equation (6) n= O and m= 1, the
result is

‘%=-’(K+2r’’’)+~H+)H-’)’’~’30’
If the assumption of a single-parameterfamilyof curves is

.

2.6

~ Eiperimentaf

––--–- CWc.loted

2.4 I

/“

~

.22
.—

H ~1

2.0

/.8

/...

1.6
r /
/

.-
> .- — ..~

-- --- ----

‘“40.- J .2 .3 .4 .5 .6
z/c.

FIGURE10.+mWison Ofespedmentd vahzcaof H wkh vduP9Caka18tedby txumt!oriG9J.

P--H(H-l)(3H-I) ;s--- ‘-H’) @:2-H~ ‘7+=rf+16m : # -0.
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made ~=j(@)), t-henK=KW), and equation (3~) becomes

or, for r=O,

Bg:=dk(m(g+ to) (31)

where
– H–I)K

k(m)= ( K,

E=–;

‘=z+l(’-irf “)
If the assumption is made that g=g(~,H), then j=j(g&)

Sand ~fdg is a function of H only. Therefore, :o=fo(m.

Equation (31) then becomes

J
~ order to obtain an estimate of the qu~tit~ 1–~ o‘f dg

under the assumption thatf=f (g, H), reference 12 ia used.
Equation (7) of reference 12 may be written as

@$:= #k, (H) [~–2.065(Hv 1.4)] (33)

where
kI(@)=e5@-’”*

N’ote that Garner’s equation (equation (33)) has the form
the kinetic-energy equation takes when the assumptions
that f =f (qjH) and that.g=g(q, ~ are used in the kinet.ic-
energy equation. The Hnetic-enwgy equation (equation
(31)) can SISObe placed in the form of equation (32) wlien

is made for the shear distribution. For the purpose of

sK~f dg, theobtaining an estimate of the due of 1—~

quantity~+&@) inequation(32) is assumed to be identical
with the quantity ~—2.065(H—1.4) in equation (33).
Then

.%(@= –2.065(H–l.4)

and for H= 1.5, for example,

~o(~ = –0.2065
therefore,

+(’-+1’’’)=-0-2065

or

s2‘f dg=–O.1032
% o

Therefore 1—3sK~lfdg is the difference between two quanti-

ties, each of which is much larger than their difference.. It
follows that.,in order to determine EO(H)for dues of H not
close to separation with any accuracy, f and g must be . .
known with relatiwly good accuracy.

It ma-j-be noted t-hatthe moment of momentum equation
is also sensiti~e tog. This sensitivity can be seen by writing
the coefficient of @in equation (14) as

(EE--I) [(H+l) (+)+]

When it k noted that the integral ~ g dt is of the order of
.

unity and that E lies between 1.2 and 2.6, the sensitivity of
the coefficient of@ to g becomes clear.

In an attempt to determine mhether & is determined
maiuly by H, all the data that were used in reference.10 were
used to compute & by making use of equation (32) in the
form

@

to(H)=&-E
we surface-friction coefficient @ was calculated by the ,
formula (horn reference 17)

0.006535
4= &m

and k(EZ)was calculated by the expression obtained from the
moment of mormmtum equation

~(m=H(H= l)(H+l)
2

The values of to plotted against H are gi~en in figure 11.
The effort to determine whether&is a function mainly of H
is inconclusi~e. At least part of the scatter occurs because
dH dZ7~ and — -were obtained horn curms faired through ex-

dx
perimental pointi. In addition, t-hecalculation of &requires

dH

the subtraction of: from
‘z

—~ an operation which further~k(m
decreases the accuracy of the c~lcuhte.d dues of &

DISCUMION

AIthough equation (6) is did wheneva the boun&.ry-

layer

result

‘ dH
assumptions me did, the equations for ~ that

after additional assumptions are made do not lead to

.
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FIGURE11.—VaInw of h PIottedomht ~.

good agreement with experiment. The first of the additional
assumptions made is that all velocity profiles of t~e turbulent
boundary layer belong to a single-parameter family of curves.
The experimented data of references 7, 10, 11, 14} and 15
substantiate this assumption.

The second assumption is that the single-parameter family
of curves can be approximated by power profiles, The data
in figure 1, in which velocity profiles are compared, and also
the data in figures 2 and 3, in which K and P are compared,
show this assumption to be good, at least for H<l .8.

From tho data in figures 1 to 3, it is inferred that power
profiles can be substituted for the standard velocity profles
without greatly affecting the calculated distribution of El
against x for H< 1.8. To. test this inference, the kinetic-
energ-- equation was used with the assumption of ccni.etant
shear across the boundary layer; the result is showm in
figure 7. As expected from the data of figures 1 to 3, the
eft’ect of the substitution ot power profiles for the standard
profiles is noticeable only for ~1 .8. It thus appears that

dH
tk inaccuracy of the equations for ~ that were tested is

caused mainly by the surface-friction law that was used
and by the assumed shear distributions rather than by the use
of the power profiles.

The data of references 12 and 15 show skin frictions that
increase strongly in the region upstream of the separation
point before dropping to zero at the separation point, On “”
the other hand, the skin-friction data prw.entwl in reference
14 indicate that the skin friction falls monotonically to zero
as the separation point is reached. In the present analysis
a skin-friction law obtained from experiments on flat plat~s
is used. It is t.hercforeprobable that part of tho inaccuracy
in the equations used to calculate H is caused by the use of a
relation for the skin friction that does not.give correct values
when there are pressure gradients along the surface.

The assumptions for the shear distribution th!t wero made

to obtab a specific equation for ~ were

(a) T& shear distribution depends only on the ratio of [hc
8 dpl

pressure gradient to the skin friction ~ ~ or—~ ~ -

(b) The shear is constant across the boundary Iaycr

(c)The sheardistributiondependsonlyon the form pmam-
eter of the velocity distribution
Becaus6 hone of these simpIe assumptions is derived from a

knowledge of the details of the turbulent flow, it is not lilwly
that any of them are valid. When it. is recalled that, the
ticient of @ in both the kinetic-energy and the moment of
momentu”m equations is sensitive to the shear distribution,

dH
it is got surprising that a reIiable equation for ~ was not

found.

In order to obtain a reliable equation for *from cquat ion

(8) it thus seemsnecessary to calcdate the surfuco shear and
the shear distribution across the boundary layer more accu-
rately than in the present analysis. Efforts should Wwforc
be made to understand the mechanics of turlxd~nt shear
flow sti.iently welI to provide an independent relation for
the shearing stress that wiil prtxlict the behavior of turbulent
boundary layers when used with the Prandtl boundary-layer
equation (equation (l)).

CONCLUDING REMARKS

A general inte@ form of the boundary-layer equation is
derived from the Prancltl partial-differential botildmy-l~y&
equation. The general integral equation, valid for vilhcr
laminar or tm,bulent incompressible b.oundmy:laycr flow,
contains the Von Kdrmtin momentum equation, lhc kinrtic-
energy equation, and the Loitsianskii equation as special
cases.

In armttempt to obtain a practical method for thu mhlula-
t.ionof the development of the turbulent boundary layer, U*
is made of the experimental finding that W tho velocity
profles of the turbulent bounclary layer form essmtially a
single-parameter famiIy. !IM general equation is thereby
changed to a simplerone from which an equation for the space
rate of change of the shape parameter of the turh~dent . .
lxmndary layer can be obtained.
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The resulting equation for the space rate of change of tie
velocity-profile parameter is restricted by the assumption
that the ~elocity profiles of the turbulent bounclary layer can
be approximated by power profiles. Two of the resulting
equations are used to calcuhde the distribution of the
profde shape parameter over an airfoil for one experimentally
determined pressure diatriiution. Although - diilerent tLs-
sumptions were tried for the shearing stressacross the bound-
ary layer, the calculated distribution of the profle shape
parameter clid. not agree e.sactly with the esperimental
clistribution.

~ examination is”made of the effect of using the experi-
mentaIIy determined single-parameter famiIy of ~eloci@
profles instead of the power profiles on certain functions
that occur in the eqwition for the space rate of change of the
velocity-profde pmameter. One calculation of the distribu-
tion of the protileshape parameter o-ier an airfoil is also rnacle

for the experimentally determined pressure distribution by
- the shgle-parameter family of Teloci& profles founcl
horn eqeriment. A comparison of the results with those of
a c.akulation made with the same assumptions except for the
use of povrer profiles shows some difference near the separa-
tion point. It is beIie~ed, however, that the apparent lack
of reliability of the specific equations used to make the calcu-” –
lations is caused mainly by the Iack of precise knowledge”
concerning the sm.-face shear and the “distribution of the
shearing stress acroas the turbulent bounckuT layer. The

-- T.,

present analysis emphasizes the need for information concern-
ing the shearing stresses in turbukmt boundary laye~. --

h-GLET ~EROXAUTIC.LL LAB ORATORY-,

NTMTOML ADT-LSORY’ CO~~EE FOR AEROX-AUTICS,

~+~GLEY FLELD, T’A., May ,22,I%YJ.

APPENDIX A .

DETAILEDDEVELOPMENT0)? EQUATION(3)

Equation (2) can be written so that terms of the form
w“~l-~~’ appear expIicitly; therefore, each term ti
vanish at the outer edge’ of the boundary layer. The
resulting equation is

[* : (u” +I_~”m+lX+$ c
1

@l+l_~”m+I)r +

1 ?Yuu”+l 1 a~l-~+l
m+l bx ‘m+l aY +

1 (u=~l— L:m+l)udr~
?n+l PO ~+&~$

=Umlr dLr /u= ar——
dx

(Al)
p a~

or, after simpltication,

[
‘+ ~ (~-~+LA&+I )U+; (L -=+Q+L)q-

1 (p+l-u=+qa dro
~–@=U-u.uq p; :; (_@)

m+l r.

Equation (A2) is now “multiplied through by U’ ad inte-
grated with respect tony from y=O to y=& The result~~
equation is

J–~ j“$(~’m~L–um+W@r–
J~ :V’ ~ (U=+’–U”+L) ~dy–

A i 21~n~m’’-””’~”@-
d~r 6

J J
~ ~y’(U”u–U~”) dy=; ;u*Y’ ?& dy

218687—53—69

or, after simplification and substitution of the formula for
the ditTerentiation of a detlnite integd

-.

J dis;Yn ; (~T”~l–u”+?u dy=~ ~Yn(~T=+l–@% dy

the following equation results:

-iii% ~“+’ry”[’-(:)”+l];”-
s+ :Yn ; (U”+l–U”:’) ~ dy–

H%Y3Hr@- -
“m+’~r[(:)m-fil’”d’=:rum’’%d’

(A3)
By integ~ation by parts,

and equation (A3) becomes

-–-um’21”aF-(5)m’1d’+Id
m+l dz

J* :WP’+’–uw Z)y=-’(fy-

‘%%btwrl ~d’-?rk+l

‘T’+l%r[(t)m-~lyndy=;J”my’%d’ ‘A”
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Thevelocity acanbeelimimited from the term

r

8
(uW--@+l)@-ldy

,0

by the following development:

The velocity v may be written as

v=
J

*Y$.dy+oo

or, by use of the equation of continuity,

):=—
s J1 dro ~‘~dy–--Z ~ udy+voo ax

J Jub(u—u)dy—v~+;odx o=
ax ‘u 1 ~ ‘ (U–u)dy–g # y+?),

o

S[
()~ l-; dU “’. ‘Uaz

( )1+~ 1–~ dvy ~+

&T’(’-w%$~+’o-

S

pa I–8
V=u ‘ax ‘dy+~~(l-fi)~y-y(~+~~~~

%iN’-w+’o

or, after terms are cxdlected and j is substituted for @U,
the result is

J (
r b (1‘~) dy+ ~~+~~) [~”

O=u ax (1–j)dy–y] +ZIO
o 0

sThterm~(U=~’-um+s)vy’-’ dy can now be written as

r sa(@+l_Um+~UyMdy= d (UZI&H_@+l) Y?z-l

.0 0

J

f ~T u a (:;fl dy+(::+: g) [y’

(0”
(1–fl dy–y]+vo} d~

o

or

f

6
(u~+l–u~+l)vy~-ldy

.0

J
= u“+~ a [s 1(

dUVa(l —fl dy dg~ _J#
y’-’(l –j~+q

o 0 ax

u ho @+l ~yn-yl_jm+l).—
r. dx)S [s 1

‘(1–j)dy-y (/y+
o 0

UOLP+!sdyn-1(1 _j81+l)~y

o

iowIet .- -.

J‘y ’-I(l–.f=+l)
u 1

‘b(l —j) dy dy=l,6n+1
o ax

J
‘y ’-’(j m+l)l)

[; 1
U(1 –fldy dy=Jdn+’

o 0

f
‘y’ (1–j~+l) dy=Mon+l

.0
and

Jdyn-l(l–jm+ijdy=Q8m
o

JThe tern” d(u~~l–u~+l)vv’-l dy no~vbecomes .
0

where

~=;.



APPENDIX B

SIMl?Lll?ICATIOX

C.4LCGLATIOSOF :;+rd

The definition of ATOn~Lis

.-%

OF TERMS

~ygli+l=Jp=ww
therefore,

x= J“s(l–fi+’)jq”dq
o

and
dAl_ 8:0

S[
~H– ~

1
(1 –flu) &j(”m+l)fi & 7’ d??

or
dA’

J

w ~f
~= ~ ~ [1–(m+2)fi~1]q’ dq

The definition of lWI is -

s~&+l=‘(~_fl+l)
o (I’% ’’)’n-l”-

therefore,

1=
[ “e~’-fl’l)(rad’)’=--’d’.0

Then

Jweaf
–(m+2)j”+’]q”d?l+ ,‘~+nI= o ~H[l

J
Me

n
o (l-fWr%W’-l’”

IN EQUATION

(B1)

@~)

‘When equation (M) is substituted into equation (Bl), the
following equation isobtained:

.

bf ~af bf

)g+n~=(m+l)f: ~nf’ (~’o ~~rf &g d~

Use is now made of the pomdaw assumption

0
f=p=qP ; p

Then
af 1—2p~ p Iog r
2iZ?=2@+l)(2p+l) “+ 2

and

(S)FOR POWER PROFILES

.

s l—2p’
21&+l)(2p+l)

~,, + r“ @ r
2 1

After a lengthy manipulation, ‘&+nI is found to be

diV ?n+l @l+l)’(2p+l)’(p”m+n)~+nI= –T
p=+’@(?n+2)+?l+l]~

where use has been made of the following equation:

~ (P+ I)(2P+U—=
e

.-
P

CW’CKIIATIONOF .V

The ddnition of .iVt?’~’is - “ . -=

When f= v is used, the equation for N is ..

()AT= : ‘+1
p(?n+ 1)

~(?n+2)+n+l](p+n+l)

or

h?= (m+ 1)@ + 1)”~I(2p+1)”~1
p%(m+2)+n+ 11Cp+n-kO —

CALCITLATION- OF J

From the definition of J3’~1,
—

JJ@l= t (1–p+’) [~ (1–f )dy] ya-’dy
o

When f= P, the equation for J is
,.

0 s p+lJ=;‘+11[1–rp(”~”l (~–m) f=-’ dt
o

or, after a kn#hy man.ipuhition,

——

{
(P+l+n)@m+n+2@+ l)l+p(m+l)+l+n

1(n+l)lj-”+l+n)~ m+r)+n+llh(m+l)~ p+l+nl -

10s3 .
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CALCULATION OF M

From the clefinition of M@”+l

When f= {2, the equation for M is

.M=(?n+l) (P+l)”+’(2p+l)’ +1
Pn(n+l)[p(?n+l) +n+l]

CALCULATION OF L

From the definition of LiW

‘Wen.f= f’, the equation for L is

L=(m–l) @+~)n+’(M+l)’+’ .
p’(p+?z+l)(p?n+ n+l)

CALCULATION OF
N(H-m)-n (J-M) (H+l)+(m+l)L

dh’
#nI

From the expressions for J and M, the. expression for
J–M is

J–J4=@+l)” (2p+ l)n+l
P

n-l (m+l)

&+l+n)[p?n+n+2 (p+l)]+h(m+l)+l+n]
(?l+l)(p+l+n)~(m+ l)+n+l][p(?n+l)+p+l+n]–

(p+l)”+’(2p+l)”+’
@+l)p’(?2+ l)@(?n+l)+n”+l]

After a lengthy simplifhtion, the result is

J–M= –(m+l)@+l)’ (2p+l)”+’

Tn(P+l+~)b(~+l)+P+l+~l
or

–n (J – M) (H+ 1)=p:~p(;l++l; :);+;y+-’p++l]n’nl

where H= 2P+ 1 was used. The expression obtained for
N(H–m)+(m+l)L is

A’(H–?n)+(?n+l)L

=(m+l) (~,+1).:+’(2p+ 1)’+ ’2p@?n+?n+n)
fl’’(p+n+l) [p (?n+2)+n+l]@n+? i+l)

and the expression oht.ainedfor

N(zz-m) –w-.11) (H+ 1)+@t+l)L
is

N(H– m.)-n(el-lf) (H+ 1)+(m + l)L

=2(m+l)(p+ l)’:’(2p+ l)”+’[n(p?n+n+l)+p(p m+m+n)]

p“@+l+n)[p(rn+ 2)+n+l]@m+n+l)

By substitution and simplification

N(H–m)–n(J-M) (H+ l)+(m.+ I)L

f&+nI
—— . .

=–4p(P+l)(2p+ l)@(nI+2)+n+11 .: ~
pm+n+l

It can iko be shown that

–p3+nll(m+2)+n+ ll{2P+l+Wn+2)+7z+ 11.

EVALUATlON OF -,v+n (J-.If)+nQ

From the results for N and J–.31 -..

–J7n+l) (p+l)”(2p+ l}”+’_AT+n(J–~f)=—’ ~M[2(m+2)+n+11

For ~“’the development is

and with j= ~r, the following expression is obtained for n #O:

~=m+l (p+l)m(2j+l~
~ f?”-’ [p(m+l)+nl

-.

Then, fiy substitution und simplification, for n#O,

–N+n(J–.3l)+nQ=
–(m+l)f)+l)’+’(2 p+l)”(pm+n)

Inb(m+z)+n+ll [p(m+l)+nl

(m)

If use is made of tliepreviously derived result thti~tiQ~ 1
for n=O, the following equation is obtained for n=O:

.’

If n is placed equal to zero in equation (J3J),equation (B-1)
results; therefore, equation (B3) is valid for n.=0 as well m
n#O.

Then, for all ~-aluesof n,

–lV+n. (J-M)+ nQ=2@+l)p[p( ?n+2]+n+l] ._,
dN ~(m+l)+n~+nI .-
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